7

L AD=A039 746 FEDERAL COBOL COMPILER TESTING SERVICE WASHINGTON D C F/6 9/2
!XPER!ENCES IN COBOL COMPILER VALIDATION. (U)
MAY 77 © N BAIRD» M M COOK : '
UNCLASSIFIED FCCTS/TR=T7/06 NL

END
B=T1

| o |

"I" 1.0 e g

1 22

e
b C M
B O

L2 s pes

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-

L

ADAG39746

o
o
-
o
)
—
e

Experiences in COBOL compiler validaiion

"I/ GEORGE

Department of the Navy
Washington, 1).C.

INTRODUCTION

The Federal COBOL Compiler Testing Service (FCCTS)
s an activity of the Software Development Division of the
Department of the Navy, Automatic Data Processing
Equipment Seleetion Office (ADPESO). Sinee July 1, 1972,
all COBOL compilers brought into the Federal Government
to be identified as implementing one of the levels of
Federal COBOL Standard. The National Bureau of
Standards, which has the responsibility for the development
and maintenance of Federal ADP Standards, has delegated
to the Departient of Defense, and thereby to ADPESO,
the responsibility for the operation of a Government-wide
COBOL Compiler Testing Service. This responsibility is
discharged by the FCCTS through the implementation and
maintenance of the COBOL Compiler Validation System,!
a comprehensive set of routines used to test COBOL ecom-
pilers for compliance with the Federal COBOL Standard as
preseribed in Federal Information Processing Standards

have
the

Publication 21-(FIPS PUR.21) 2 published by the Natignal

Bureau of Standards

This paper addresses several questions that arise in com-
piler validation. Why validate compilers for conformance
to a standard? How is the validation performed? What
experiences have been gained, and what conclusions can be
derived from them? The questions will be discussed in turn.

WHY VALIDATE COMPILERS?

The purpose of validating a compiler is to ensure that
syntactically carrect programs compile and exeeute without
abnormal termination, and that the semantics of the lan-
guage being translated are correetly interpreted. Also,

where appropriate to the language), validation should
point out the impact of implementor defined specifications
which are allowed by the standard.

There are three phases in the computer systems acquisition
cyele durmg whieh a validation is important. Prior to selec~
tion, a validation of the compilers for the various systems
bemng proposed may constitute a part of the systems evalua-
Alter a computer system bhas been selected, a valida-
tion of the present compiler and a validation of the compiler
to be proeured disclose the areas of nonconformance in both

tion.

. BAIRD and MARGARET M. COOK

417

compilers. The effort required in converting existing pro-
grams to the new system can then be realistically estimated
prior to the changeover. After the delivery of & new comi-
puter system, but prior to aceeptance, a compiler validation
will reveal areas where a compiler does not meet the terms
of the contract.

Our experienee with the
that continuing benefits accrue from being aware of a com-
piler’s status vis-a-vis its language standard. Compiler
validation for computer systems which have already been
acquired and are in present use can serve to point out which
language clements do not operate correctly and thercfore
should not be used. A validation is particularly useful when
a new version of a compiler or operating system is released,
since it will immediately reveal errors in the revised software.

If a user has access to several different computer systenis
and is doing program development on all of these, he must
know what language elements conform to the standard on
each of the systems. Validation of the compilers on cach
system shows which language elements perform correctly.
By writing programs using only “these elements;- a ~user -
ensures program portability.

Validation System has shown

SCOPE OF VALIDATION

Errors in compiling a program may arise from a single
statement or a particular sequence of statements. Since
validation verifies that individual language elements are
processed correetly, errors in combining language elements
may exist even though each of the separate elements are
processed correctly

A validation is not concerned with the efficiency of the
object code generated, but only tests if the code is produced
correctly. A validation system does not test implementor
extensions to the language. If the implementor extensions
cause problems in the standard language elements, a valida-
tion will identify these errors, but any errors in the vuse of
the language extensions themselves will not be discovered
during validation.

Finally, while a validation identifies problem areas in the
use of standard language elements with a given compiler, it
cannot indicate the ramifications of the compiler errors
discovered

D‘b“‘“‘“’«vl“ ISYRIV P} § A

TN v —. .

e
App[;ojed for pukis relocaey
rributien Uuiimiod

r

418 National Computer Conference, 1974

-y

FCCTS COBOL COMPILER VALIDATION

The validation of COBOL compilers by the Federal
COBOL Compiler Testing Service is perfornied using the
COBOL Compiler Validation System (CCVS), which was
developed by the Department of the Navy Programming
Languages Section under the direction of Capt. Grace M.
Hopper, USNR. The CCVS consists of audit routines, their
related data and an executive routine. Each audit routine is
a COBOL program, and includes many tests of individual
language elements. Supporting procedures indicating the
results of the tests are included in each routine. The audit
routines of the CCVS collectively contain the features of
Federal Standard COBOL.

There are certain adjustments which must be made
before the audit routines can be compiled upon a given
computer system. First, names allowed by the COBOL
standard to be implementor defined must be inserted into
the audit routines before they can be compiled. Second,
system control cards are required in order to compile and
execute a COBOL program. File specification and allocation
are also regulated by system control cards, and additional
control cards are usually required by programs using the
COBOL SORT verb. Third, the given system configuration
may not include a hardware device or capability required
by some of the test procedures in the CCVS, for example a
system which does not support multiple unit assignment
for mass storage devices. All references to multiple units
must be deleted for the proper compilation of the audit

" foutines on that system. S

EXECUTING THE AUDIT ROUTINES

Input parameters to the CCVS executive routine® specify
the implementor names, hardware dependent language
elements to be deleted, and the operating system control
cards required to compile the audit routines on a given
computer system. The executive routine creates a file con-
taining the audit routines with implementor names inserted
in the proper place in the source code, and the operating
system eontrol cards required for compiling and executing
each routine.

The audit routines in the CCVS consist of source code
which is syntactically correct; the routines do not contain
any tests which deliberately introduce incorrect syntax.
Thus, each audit routine is expected to compile without
errors. (This is frequently not the case. We have encoun-
tered “‘Standard” compilers where syntactically correct
source code causes fatal diagnostic messages, compiler
aborts, and even compiler loops.)

When an audit routine does not compile, or complete
exccution normaily, the source code containing the language
elements which the compiler could not handle is modified
or deleted. The tests in the PROCEDURE DIVISION of
the audit routines are coded so that a test is deleted by
inserting NOTE at the beginning of the paragraph contain-
g the test. This results in the entire paragraph being

treated as a comment. The source paragraph following the
deleted paragraph contains procedures which indicate the
test has been deleted.

The CCVS executive routine contains an editing capability
which permits addition, deletion, or replacement of source
lines in the audit routines. After an audit routine has been
modified so that it consists of only the language clements
that the compiler aceepts, the routines are again compiled
and executed.

All of the supporting procedures for verifying whether a
test passes or fails is contained in cach routine. An output
report is produced indicating the actual results of each test,
and, when a test fails, the expected result.

ADDITIONAL INFORMATION FROM COMPILER
VALIDATION

A compiler validation identifies many characteristics
which can be used in comparing compilers. Due to compiler
errors, valid syntax in the audit routines may be rejected
or the resultant object program may abort during exccu-
tion. The running of the CCVS on a system supplies informa-
tion concerning the effectiveness of diagnostic messages
The effort required in locating the source code which caused
execution to terminate abnormally can also be assessed.

The procedures used in validating a compiler give infor-
mation on a system's ability to execute a program after
fatal compilation errors have been diagnosed, or the effec-

tiveness of a system supplied option for skipping execution

if fatal errars are encountercd.

Some minor programming aids may also be discovered
during a validation. The audit routines can be compiled
using options for cross reference listings of data-names and
procedure-names. Some compilers flag blank cards. In some
cases, we have uncovered hindrances. The suppression of
the printing of the contents of columns 73 through 80 on a
source listing is, for example, a hindrance to anyone run-
ning the CCVS, since the CCVS executive routine uses
columns 73-80 te indicate whether a source line has been
replaced or added.

THE VALIDATION SUMMARY REPORT

The output of a validation is a set of listings from the
executive routine documenting the steps taken in preparing
programs/jobs for execution; the compilation of each pro-
gram; and the execution report of each program. These
listings constitute the raw data from which a Validation
Summary Report (V8R) is produced. (Any attempt to use
the raw results for evaluating a compiler would be painful
indeed due to the volume of paper involved.) The VSR
provides the following information:

(a) The status of the compiler in reiation to each of the
four ederal levels of COBOL as defined in FIPS
PUB 21.

(b) A list of language elements whose implementation

TR

Experiences in COBOL Compiler Validation 419

is not consistent with the language specification
(American National Standard COBOL X3.23-1968).¢
A list of language elements which are not imple-
mented due to a lack of hardware nccessary to sup-
port those elements (e.g., read reversed, hardware
switches, ete.). The language specification does not
require the implementation of certain elements if
they are dependent on specific hardware devices,
and the system supporting the COBOL compiler
itself does not support that device.

(d) Information-only items. These are necessitated due
to the existence of impreeise language specifications
in the Standard.

Compiler characteristies noticed by the validation
team. This includes the usefulness of diagnostic
messages issued, format of the source program
listing, and timings and memory requirements for
the compiler and individual audit routines.

(¢

(e

COBOL COMPILER PROBLEMS DISCOVERED
DURING VALIDATIONS

The FCCTS has, since its establishment, validated coin-
pilers supplied by many different vendors. Many problem
areas have been uncovered during these validations. Soiae
of the problems are common to many compilers; others
occurred only in particular ones.

In this section we present some of the common problem

areas-we have discoyered in “Standard” COBOL compilers.

The problems are grouped by the COBOL functional pro-
cessing module in which they are found.

Nucleus

In o NOTE character string, any combination of charac-

ters from the computer's character set is treated as a com-
ment; the string appears on the source listing, but is not
compiled. From the NOTE tests included in the CCVS we
have found that most COBOL compilers check the syntax
of a NOTE statement. As an example, one of the tests is a
NOTE sentence containing a single ** (QUOTE) character.
Most compilers generate a message indicating an illegal
alphanumeric literal format was used since an alphanumeric
literal is a character string enclosed in quotes. If the NOTE
statement is not the first sentence of a paragraph, the NOTE
comment ends with the first period followed by a space. On
many systems though, the first period, with or without a
trailing space, terminates the NOTE comment and attempts
are made to compile the rest of the comment.

There are tests of the ADD and SUBTRACT CORRE-
SPONDING statements with matching items requiring
five Jevels of qualification. Most compilers give diagnostic
error messages for these tests, but in some cases the com-
pilation of the program was terminated.

A test of the floating insertion editing capability included
in a Nucleus module audit routine moves 000123.45 to an
elementary item with a PICTURE clausc $$8B999.99.

The language specification states that any of the simple
insertion characters (comma, blank and zero) immediately
to the right of floating insertion characters are part of the
floating character-string. Thus, the contents of the edited
item after the test should be $123.45. The result usually
obtained for this test is $§123.45.

Sequential and random access

The size of the data records for a file may be specified
by the RECORD CONTAINS integer-1 TO integer-2
CHARACTERS clause. The size of each record in the file
is defined by the individual record descriptions and the
RECORD CONTAINS clause is optional. If the clause is
used, there should not be any restrictions in the File De-
scription. We have found compilers which require the num-
ber of characters in each record to be a special item at the
beginning of a record description when this clause is used
This is a nonstandard restriction.

One audit routine for both sequential and random aceess
file processing includes a CLOSE file WITH LOCK state-
ment. Attempts are then made to OPEN and READ the
locked file during the current run unit. A file that has been
closed with lock cannot be opened again during execution
of the object program. Most of the systems tested abort
the program exccution with an error message stating that
an attempt to access a locked file has been made. Some of
the systems return data and continue executing as if the
CLOSE WITH LOCK had not been encountered. -In one
case, the program went into an execution loop when an
attempt to read a locked file was made.

Table handling

In the COBOL Table Handling Module, the OCCURS
DEPENDING ON option specifies a table whose number
of oceurrences varies during exeeution. The number of items
in the table during execution depends on the value of the
data-name in the DEPENDING ON clause. If a SEARCH
statement is encountered for a variable table, the last
entry in the table is defined by the contents of the dats-
name. Some compilers accept the syntax for the table defini-
tion, but the table is always considered to be its maxinium
size in a SEARCH statenient.

Segmentation
An independent program segment is expected to be in
its initial state each time the segment is made available to

the program. There are compilers which do not restore the
initial state of independent program segments.

Library

The COPY statement with the REPLACING option
allows the user to copy library text, replacing each occur-

e

420 National Computer Conference, 1974

rence of a word in the text with a new word. A variety of
problems have been found when exereising this option in
(e audit routines. One compiler correetly handled a COPY
REPLACING statement, but in a subsequent COPY
without the REPLACING option of the same library text,
words were replaced which should not have been. This
caused undefined data-names during the program com-
pilation.

Many compilers place restrictions on the REPLACING
option which are not in the Standard. Some of these restric-
tions are that a qualified name could not be replaced; a
data-name could not be replaced by a subseripted data-
name; or a data-name could not be replaced in an 01 level
entry in the Data Division.

Sort

A frequent restriction encountered in the SORT module
is a limitation in the specification of the minimum number
of characters in a sort record description. Usually the com-
pilation of the COBCL source program will not cause any
diagnostic messages, but when the sort program is exe-
cuted, a message indicating incorrect record length is pro-
duced.

Problems have arisen when one of the sort keys is defined
as a signed numeric field. I'or a sort on ascending keys,
negative values should appear - before positive values. In
some cases, signed nuniede items have not been sorted in
the correct order because comparison was based on the
actual binary structure of the data, and not the algebraic
value associated with the data.

Implementat:on variations

A file may econtain multiple record descriptions, with each
record having a different length. It is important for a user
to know how much external storage media must be allocated
for recomls of a given file. In order to compute this a user
must know if a given implementation always writes records
of the max.hum length, or if variable length records are
written. This would be especially significant if most of the
records in the file were much shorter than the remainder.
Though not required by the standard, a great deal of ex-
ternal storage space is wasted if fixed length records are
written.

There are procedures in both sequential and random
access audit routines which create a file containing variable
length records, and in the subsequent reading of the file test
if the system creates all records as the maximum fixed length.

As a result of our validations, we have changed some tests
to information-only tests because of language ambiguities.
For example, there is no explicit statement in the Standard
as to what the result should be when moving a signed nu-
meric field to an alphanumeric field. There are statements
suggesting that any appropriate conversion takes place
during an elementary move, but there could be doubt as to

whether the elimination of a sign i1s included. In order to
determine the result for a particular compiler, the alpha
numerie item is tested for a numeric value after moving a
+1 and a —1 to the alphanumeric item.

The use of optional words is only for readability and they

are not supposed to effect the meaning of the statements

However, we have found one case where the presence of
the optional word ‘IS’ changes the meaning of a statement
One of the audit routine tests is

IF A = B AND IS NOT GREATER C OR D

The presence of the word “IS' leaves no doubt that NOT
is part of the relational operator NOT GREATER. As a
result, the expansion gives

IF A = B AND A IS NOT GREATER C O
A IS NOT GREATER D.

But for the combined abbreviated relational condition
IF A = BAND NOT GREATER C OR D,

the language specification states explicitly that the word
NOT is part of the logical connector AND NOT, and is
not part of the relational operator NOT GREATER. The
effect of the rule causes the statement to be expanded so
that the NOT is associated with the operand called C, and
not associated with the operand called D-

IFA = BAND NOT A GREATER C OR A GREATER D.

The presence of the word ‘IS’ in the statement can indeed
violate the law of least astonishment.

The discovery of problems in tests such as those de-
scribed above has resulted in recommendations for language
clarification to the American National Standards Institute
Technical Committee X3J4, which has the responsibility
for the maintenance of X3.23-1968 COBOL.

REASONS FOR FAILURES IN EXECUTING THE
AUDIT ROUTINES

There are scveral reasons why a compiler may be imple-
mented in such a way that there are diserepancies between
the language specifications and the results given by the
compiler. The most common reason for discrepancies is
simply due to logic errors in the compiler. This can be
attributed to lack of adequate controls in producing com-
pilers.

A sccond reason for differences in the implementation is
the misinterpretation of the language specification on the
part of the implementor. One case in point (which has been
noticed in several compilers) is the use of the word THRU
in the current standard (X3.23-1968). In many specifications
throughout the document, the word THRU appears as
follows:

PERFORM procedure-name-1 THRU procedure-name-2
FILE-LIMIT literal-1 THRU literal-2, ete.

There is nothing in the above syntax which indicates that
the words THRU and THROUGH are interchangeable.

.

Experiences in COBOL Compiler Validation 421

The only reference that establishes this little known fact
is the reserved word list where they are shown to be equiva-
lent. This probably accounts for the fact that we have
identified several compilers which do not allow usage of
THROUGH.

Ancther problem is the ambiguity that is inherent in a
language as complex as COBOL. These are areas in the
current language specification that, at best, are ill-defined,
and the imiplementor must make a unilateral decision as to
the direction the implementation will take. A good example
would be the default action the compiler takes for a WRITE
statement to the printer, when the ADVANCING phrase is
not specified. Based on whether the default assumes WRITE
BEFORE ADVANCING or WRITE AFTER ADVANC-
ING inappropriate spacing or overprinting of lines can
oceur. This was recognized as a shortcoming of the language,
and subsequently corrected so that a default is now specified.

RESOURCES REQUIRED

An accounting summary is prepared for each validation
performed. This summary includes professional personnel
time for required modifications to the CCVS (to accommo-
date any compiler peculiarities), site visit for acquisition
of raw data, evaluation of raw data, and preparation of the
VSR; and processor time required for executing the audit
routines. An average validation has thus far required 73
hours of professional time and 29 hours of clerical time.
The processor time will naturally vary with the computer
used. Exccution of all the audit routines takes approxi-
mately 20 minutes of UNIVAC 1108 processor time. We
estimate the average cost of a validation to be approxi-
mately $1,000, although these figures are subject to wide
variations.

CONCLUSIONS

The use of the CCVS in validating COBOL compilers at-
tempts to answer three major questions:

« Will the compiler accept the syntax as defined in the
JOBOL language specification?

o Will the compiler generate the appropriate object code to
satisfy the semantic requirements of the language
specifications?

e What unilaterial actions does the compiler take when
the language specification leaves the result up to the
implementor?

The results of over a year’s work in validating a variety
of compilers indicate that there may not be a compiler which
completely conforms to the COBOL standard In a few
cases we were tempted to question whether the compiler
was in fact compiling COBOL, or some other language
similar to COBOL!

The reasons for the amount of non-conformance or devia-
tion from the language specification can be blamed partly
on the 1968 COBOL Standard. Most of these problem
areas have been resolved during the development of the
revision to X3.23-1968. As a result, we feel that we can
expect to see better compilers since the language specifica-
tions are tighter and better defined; the idea of providing
standard compilers is being encouraged in the marketplace
by the users; and, most importantly, we have a measure-
ment tool which can be used to determine the degree o
which a compiler conforms to the Standard.

We recognize that the Validation System is necessarily
incomplete. But we also are convinced of the importance
of having some capability for measuring the quality of
software. What we have learned during the period we have
been validating compilers confirms the importance of soft-
ware engineering, and thereby the importance of any meas-
urement tool which results in software quality improve-
ment.

KEFERENCES

1. Baird, G. N., “The DOD Compiler Validation System,” Proc.
1972 FJCC, AFIPS Press, Volume 41, Pages 819-827.

2. Federal Information Processing Slandards Publication 21, US.
Government Printing Office, Washington, D.C., March 1972.

3. Navy COBOL Compiler Validation System User’s Guude, Information
Systems Division, Department of the Navy, January 1973.

4. American Natwnal Standard COBOL X3.23-1968, American Na-
tional Staudards Institute Incorporated, New York 1968.

BIBLIOGRAPHIC DATA "\'\7 2. 3MRecipient's Accession No
TR-77/06 : ¥

| SHEET *

i B o n. b! s ———

| . Repogt Date

\ é Experiences in COBOL Compiler Validation, [M\MJ q7 1
v)r 6. 0

—_

CCTS/

v

8. L"er(orming Organization Rept.
o.

aird asa Margaret M.Aook {

- Performing Organization Name and Address

Federal COBOL Compiler Va

ADPE Selection Office /

Department of the Navy (] f C) W(. 77 1. Contract/Grant No.
Washington, D. C. 20376 / S R

12, Sponsoring Organization Name and Address --
ADPE Selection Office 5
Department of the Navy
Washington, D. C. 20376

10. Project/Task/Work Unit No.

13. Type of Report & Period
Covered

IK Supplementary Notes

16. ‘~§stracxs
his technical paper goes into the subject of software verification, COBOL

compiler validation in particular. This research is a result of the work performed
by the Federal COBOL Compiler Testing Service (FCCTS). This organization £s the
only one of its kind in the Federal Government in that it deals with the quality
assurance of software. The paper discusses why to validate software, the scope of
software validation as well as the COBOL Compiler Validation System (CCVS) used

by the FCCTS in performing its mission of validating all COBOL compilers brought intﬁ
the Federal inventory.

17. Key Words and Document Analysis. 17a. Descriptors

COBOL

Validation

Software

$uditf: I;outines :::;;6| it - ‘
erifying

Compilers s White Secties
Standards g Bull Swcths [
Programming Languages Ao D

CTFICATION .cconneene

17b. Identifiers /Open-Ended Terms

B is——————————~
i qrorTian /ATARA: T QOO0
Al an¢/of SPEIAL (

CCVS

; 17¢. COSATI Field/Group
- 18. Availabili
vailability Statement 19. Security Class (This 21. No. of Pages ;
Release unlimited. Rcr{,?&'(zl_,\ssmlgn 5 :
i 20, Security Class (This 22. Price
Paﬁ‘
NCLASSIFIED

FORM NTIS-35 (REV. 3-72)

? 7&7 ‘/é{ THIS FORM MAY BE REPRODUCED e "“{"Z)

e

